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» Multi-exit networks [1] offer a dynamic way of Having trained an overprovisioned network, we Setup: MS-COCO for DRN-based [3] MESS
performing inference, without wasting resources on Training multi-exit networks can select the exits for the use-case requirements instances on top of ResNet-50 and MobileNetV?2
redundant computation for “overthinking". Moo ) - . (e.g. latency, accuracy, memory) and hardware backbones. Latencies reported over GTX 2080 and

= Multi-exit networks comprise of early exits attached Euctll_eXIt niltwolg > arf&tybplciby traine - I at hand without the need for retraining the Jetson Xavier AGX, respectively.
to a backbone network, acting as early-evaluation hd-to-end: Exits & backbone are jointly MESS network.  Search can be performed Quantitatively, a latency-optimised MESS instance
outputs at inference, based on some exit policy. optimised. T accuracy, T complexity exhaustively based on profiling from a validation achieves workload reduction of up to 3.36x (w/o

= Applying this naively in the dense task of Semantic IC-only: Backbone & exits are trained in set, several orders of magnitude faster than NAS- accuracy drop) and up to 4.01x (< 1 pp of
Segmentation quickly negates the benefits due to sequence. T flexibility, | degrees of freedom based solutions. accuracy degradation). A MESS instance optimised
heavyweight exit heads. for accuracy achieves mloU of 5.33 pp higher than
We propose a two-stage training scheme that Deployment Scenarios the baseline. Similar are the gains for MobileNetV2,
Introduction combines the best of both worlds: A var cil | h with 15.7x sma.IIer workload: |
1. The backbone is trained considering the Mélggety 0 IE erence Settln.g? arﬁ Suppforte y Table: MESS instance comparison to SOTA baselines.

_ _ _ o : : : : : networks so as to satisty the performance Baseline Backbone Search Targets Results: MS-COCO [2]
Semantic segmentation is a backbone task for many vision final and a single early exit at each iteration. eeds under each device and ay Iical’jcion—s ocific Error GFLOPs mloU GFLOPs  Latency!
systems, spanning from robotic navigation and self-driving Different exit points are dropped per iteration in E o diff PP ™ pl . DRN (i)~ ResNet50  —Baseline- 50.027% 138.63  39.96ms

' . . i i | | - i) ResN i 35% 113, .
systems often operate under stringent latency constraints 2. The backbone is then frozen and early exits ) g " g;r:l ((iv)) MRE§|N§t5tc\)/2 < 1;4 I_min gi;izﬁ, 3;1.?2 é?.(l)zllms

_ _ _ _ _ v) MobileNe —Baseline—- 24% . .04ms
within the limited resources of an embedded/mobile device. of various configurations (/.e. archltectures) are 3; .anytm;e n ecll‘ence. ’ Ours  (vi) MobileNetV2 min < 1x 57.49% 810  56.05ms

¢ _ _ ) , T Input-dependent interence Ours  (vii) MobileNetV2< 0.1% min 54.18%  4.05  40.97ms

We propose MESS, a system that derives, trains and attache_d at .cl|fferent positions of the backbone Ours  (vii)MobileNetV2 < 1% min 53.24%  3.48  38.83ms

deploys Multi-Exit Semantic Segmentation networks for the and trained Independent|y. "Measured on Nvidia: GTX for ResNet50 and AGX for MobileNetV2 backbone.

task and device at hand in a train-once-deploy-everywhere _ _ Prediction Confidence Qualitatively, we show the progressive refinement
manner. Architectural Choices _ _ _ o _ of the segmentation as an input image progresses

- g The exit policy in multi-exit networks s

through consecutive early exits of a MESS network:

W o 100 To design meaningful early-exit heads, we propose usually based on a confidence criterion T
the following architectural configurations to push (e.g. top-1 softmax, entropy). To summarise 4 !E | - - - -
il THAMAdAART 1T per-pixel confidence values with a single per- = N

the extraction of semantically strong features

earlier in the network and have lightweight heads: image prediction confidence (™), we craft a ﬁkﬂ Z : : :
. Channel Reduction Module (CRM): 1x1 weighting mechanism that considers the % of - IR |

Seg
Head

convolution to reduce channels entering the pixels in an image that yield confidenf:e (creP(y;)) ¢ o L
segmentation head. above a pre-specified threshold (th}"”) (Eq. (1)). B {W ” ”
Figure: Visualisation of MESS's training process « Extra Trainable Blocks: Increase capacity of Additionally, it downweights the contribution of - '

segmentation heads for meaningful semantics. pixels on semantic edges (Eq. (2,3)).

= Rapid Dilation Increase (RDI): Rapidly

. Figure: Progressive segmentation through MESS.
Starting from a backbone network, MESS:

. . . ' 1 -
= attaches various segmentation heads of different ¢ &= % nC 1(cMP(y,) > th?™) (1)

p— t vari 4 increase dilation rate for larger receptive field. RO =1 =10 "re
configurations at various positions; _ _
(pre-)trains th <ioned network + = Selection of segmentation head: Select References
. : e overprovisioned network in an exit-aware -
p P from FCN and DeepLabV/3 heads. M = erode(cannyEdge(§;),5:))  (2)
manner;
. _ . _ [1] S. Laskaridis, A. Kouris, and N.D. Lane. Adaptive inference

= searches for th.e early-exit P‘l)l'cy ana conflguratlons. for O B median(c™ (y,)) if M,.=1 through early-exit networks: Design, challenges and

the task and device at hand without the need to retrain. VO chaP(y;) = s e e directions. In EMDL, 2021.

' C - otherwise _
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where w; = {l — 2 - 0s;,...,1 + 2 - 0s;} is the
window size of the filter. This sets the pixels
around semantic edges to inherit the confidence
of their neighbouring pixel predictions.

Figure: Parametrisation of segmentation head architecture. [3] Fisher Yu et al. Dilated residual networks. In CVPR, 2017.



