
Adaptable Mobile Vision Systems
through Multi-Exit Neural Networks

Alexandros Kouris♣♦, Stylianos I. Venieris*♣, Stefanos Laskaridis*♣, Nicholas D. Lane♣♠

♣Samsung AI Center, Cambridge ♦Imperial College London (work while intern at Samsung) ♠University of Cambridge
* Indicates equal contribution.

Why multi-exit segmentation?

• Multi-exit networks [1] offer a dynamic way of
performing inference, without wasting resources on
redundant computation for “overthinking".

• Multi-exit networks comprise of early exits attached
to a backbone network, acting as early-evaluation
outputs at inference, based on some exit policy.

• Applying this naively in the dense task of Semantic
Segmentation quickly negates the benefits due to
heavyweight exit heads.

Introduction

Semantic segmentation is a backbone task for many vision
systems, spanning from robotic navigation and self-driving
cars to augmented reality and teleconferencing. Such
systems often operate under stringent latency constraints
within the limited resources of an embedded/mobile device.
We propose MESS, a system that derives, trains and
deploys Multi-Exit Semantic Segmentation networks for the
task and device at hand in a train-once-deploy-everywhere
manner.

Se
g

He
ad

Se
g 

H
ea

d1x
1

3x
3

1x
1 +

Se
g 

H
ea

d

Backbone Workload
0% 20% 60% 100%

Figure: Visualisation of MESS’s training process

Starting from a backbone network, MESS:
• attaches various segmentation heads of different

configurations at various positions;
• (pre-)trains the overprovisioned network in an exit-aware

manner;
• searches for the early-exit policy and configurations for

the task and device at hand without the need to retrain.

Training Scheme

Training multi-exit networks
Multi-exit networks are typically trained:
End-to-end: Exits & backbone are jointly
optimised. ↑ accuracy, ↑ complexity
IC-only: Backbone & exits are trained in
sequence. ↑ flexibility, ↓ degrees of freedom

We propose a two-stage training scheme that
combines the best of both worlds:

1. The backbone is trained considering the
final and a single early exit at each iteration.
Different exit points are dropped per iteration in
an alternating fashion.
2. The backbone is then frozen and early exits
of various configurations (i.e. architectures) are
attached at different positions of the backbone
and trained independently.

Architectural Choices

To design meaningful early-exit heads, we propose
the following architectural configurations to push
the extraction of semantically strong features
earlier in the network and have lightweight heads:
• Channel Reduction Module (CRM): 1×1

convolution to reduce channels entering the
segmentation head.

• Extra Trainable Blocks: Increase capacity of
segmentation heads for meaningful semantics.

• Rapid Dilation Increase (RDI): Rapidly
increase dilation rate for larger receptive field.

• Selection of segmentation head: Select
from FCN and DeepLabV3 heads.

𝒪!"#
𝒪#%&'!()

𝒪"*+
𝒪,-.*

FC
N

D
LB

Figure: Parametrisation of segmentation head architecture.

Configuration Search

Having trained an overprovisioned network, we
can select the exits for the use-case requirements
(e.g. latency, accuracy, memory) and hardware
at hand without the need for retraining the
MESS network. Search can be performed
exhaustively based on profiling from a validation
set, several orders of magnitude faster than NAS-
based solutions.

Deployment Scenarios

A variety of inference settings are supported by
MESS networks so as to satisfy the performance
needs under each device and application-specific
constraints for different scenarios. These include:
1) budgeted inference
2) anytime inference
3) input-dependent inference

Prediction Confidence

The exit policy in multi-exit networks is
usually based on a confidence criterion
(e.g. top-1 softmax, entropy). To summarise
per-pixel confidence values with a single per-
image prediction confidence (cimg

i ), we craft a
weighting mechanism that considers the % of
pixels in an image that yield confidence (cmap

r,c (yi))
above a pre-specified threshold (thpix

i ) (Eq. (1)).
Additionally, it downweights the contribution of
pixels on semantic edges (Eq. (2,3)).

c
img
i = 1

RC
ΣR

r=1ΣC
c=11(cmap

r,c (yi) ≥ thpix
i ) (1)

M = erode(cannyEdge(ŷi), si) (2)

̂cmap
r,c (yi) =



median(cmap
wr,wc

(yi)) if Mr,c = 1
cmap

r,c (yi) otherwise
(3)

where wl = {l − 2 · osi, ..., l + 2 · osi} is the
window size of the filter. This sets the pixels
around semantic edges to inherit the confidence
of their neighbouring pixel predictions.

Experiments

Setup: MS-COCO for DRN-based [3] MESS
instances on top of ResNet-50 and MobileNetV2
backbones. Latencies reported over GTX 2080 and
Jetson Xavier AGX, respectively.
Quantitatively, a latency-optimised MESS instance
achieves workload reduction of up to 3.36× (w/o
accuracy drop) and up to 4.01× (≤ 1 pp of
accuracy degradation). A MESS instance optimised
for accuracy achieves mIoU of 5.33 pp higher than
the baseline. Similar are the gains for MobileNetV2,
with 15.7× smaller workload.

Table: MESS instance comparison to SOTA baselines.
Baseline Backbone Search Targets Results: MS-COCO [2]

Error GFLOPs mIoU GFLOPs Latency†

DRN (i) ResNet50 –Baseline– 59.02% 138.63 39.96ms
Ours (ii) ResNet50 min ≤ 1× 64.35% 113.65 37.53ms
Ours (iii) ResNet50 ≤ 0.1% min 58.91% 41.17 17.92ms
Ours (iv) ResNet50 ≤ 1% min 58.12% 34.53 15.11ms
DRN (v) MobileNetV2 –Baseline– 54.24% 8.78 67.04ms
Ours (vi) MobileNetV2 min ≤ 1× 57.49% 8.10 56.05ms
Ours (vii) MobileNetV2 ≤ 0.1% min 54.18% 4.05 40.97ms
Ours (viii) MobileNetV2 ≤ 1% min 53.24% 3.48 38.83ms
†Measured on Nvidia: GTX for ResNet50 and AGX for MobileNetV2 backbone.

Qualitatively, we show the progressive refinement
of the segmentation as an input image progresses
through consecutive early exits of a MESS network:

Input !! !" !# !$ !%&'() GND

(i)

(ii)

(iii)

(viii)

(vii)

(vi)

(v)

(iv)

Figure: Progressive segmentation through MESS.

References

[1] S. Laskaridis, A. Kouris, and N.D. Lane. Adaptive inference
through early-exit networks: Design, challenges and
directions. In EMDL, 2021.

[2] T.Y. Lin et al. Microsoft COCO: Common Objects in
Context. In ECCV, 2014.

[3] Fisher Yu et al. Dilated residual networks. In CVPR, 2017.


